首页 | 本学科首页   官方微博 | 高级检索  
     检索      

盾构隧道与周围土体在列车振动荷载作用下的动力响应特性
引用本文:杨文波,陈子全,徐朝阳,晏启祥,何川,韦凯.盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J].岩土力学,2018,39(2):537-545.
作者姓名:杨文波  陈子全  徐朝阳  晏启祥  何川  韦凯
作者单位:1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031; 2. 西南交通大学 土木工程学院,四川 成都 610031;3. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031
基金项目:国家自然科学基金资助项目(No.51408494,No.51278425,No.51408326);中央高校基本科研业务费专项资金资助(No.2682015CX092)。
摘    要:为研究列车振动荷载作用下盾构隧道结构及周围土体的动力响应特性,采用模型试验方法,通过布置在盾构隧道底部的激振器施加扫频激振荷载和列车振动荷载,采用频率响应函数FRF与最大加速度分析了盾构隧道衬砌结构与周围土体不同位置处的动力响应及其衰减规律。研究结果表明:FRF是隧道衬砌结构和周围土体自身的动力响应特性的体现,与激振力的大小、扫频方向及扫频时间无关;在隧道管片衬砌结构的底部和顶部均体现出高频响应大于低频响应的特性,隧道顶部加速度响应沿隧道纵向衰减幅度明显小于隧道底部;隧道周围土体的动力响应沿深度有明显变化,但均表现出沿隧道轴向衰减的规律。隧道结构上部第1层测点土体的动力响应在全频域内随频率的增加逐渐增大。但在第2层和地表的第3层测点,土体的动力响应在30~90 Hz区段线性增长,在90~300 Hz区段出现波动变化,并无明显增大趋势;与扫频激振荷载引起的动力响应规律一致,由列车运行振动荷载引起的隧道管片衬砌结构和周围土体的振动沿隧道轴向逐渐衰减,隧道底部的加速度响应大于顶部,随着列车车速的增大,在隧道内部引起的加速度响应将显著增大。同时,在列车振动荷载作用下发现地表存在加速度放大效应,地表第3层测点的加速度响应均大于隧道结构上部第1层测点。

关 键 词:盾构隧道  振动荷载  动力响应  频率响应函数FRF  隧道衬砌结构  隧道周围土体  
收稿时间:2016-05-31

Dynamic response of shield tunnels and surrounding soil induced by train vibration
YANG Wen-bo,CHEN Zi-quan,XU Zhao-yang,YAN Qi-xiang,HE Chuan,WEI Kai.Dynamic response of shield tunnels and surrounding soil induced by train vibration[J].Rock and Soil Mechanics,2018,39(2):537-545.
Authors:YANG Wen-bo  CHEN Zi-quan  XU Zhao-yang  YAN Qi-xiang  HE Chuan  WEI Kai
Institution:1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Key Laboratory of High-Speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
Abstract:To investigate dynamic behaviour of shield tunnels and surrounding soil, a physical model test was conducted. An electromagnetic shaker located at the bottom of the shield tunnel was used to apply sweep excitation and train vibration load. The data of accelerometers are applied to calculate the frequency response function (FRF) and the maximum acceleration of the tunnel and soil. It is found that FRF is insensitive to the excitation amplitude, sweep direction and period, which represents dynamic characteristics of tunnel lining structure and surrounding soil. The results also show that the high-frequency response is greater than the low-frequency response at the tunnel lining. The attenuation of dynamic response along the longitudinal direction of the tunnel is obviously faster at the tunnel invert comparing to at the tunnel apex. For surrounding soil, a variety of dynamic response with depth is observed. A clear degradation of soil response along the longitudinal direction of the tunnel is found at all depths. The soil response increases with the increase of excitation frequency at the first measurement layer above the tunnel lining. However, at the second and third measurement layer, soil response increases linearly at the frequency of 30-90 Hz. At higher frequency range, soil response does not show a clear increasing trend with frequency. The dynamic response under train-vibration load is consistent with sweep excitation load. Both tunnel and soil responses decrease in the longitudinal direction. Tunnel response at the tunnel invert is larger than that at the tunnel apex. With the increase of the train speed, tunnel and soil responses are significantly amplified. It is also found that the soil responses at the free surface are more significant than the soil responses inside the soil layer from train induced vibration.
Keywords:shield tunnels  vibration load  dynamic response  frequency response function  tunnel lining  soil  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号