首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of projected climate change on the hydrological regime of the Yangtze River Basin,China
Authors:Zhongbo?Yu  Email authorEmail author  Jigan?Wang  Jun?Xia  Baohong?Lu
Institution:1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing,China;2.Business School,Hohai University,Nanjing,China;3.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan,China
Abstract:The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号