首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Great Dun Fell Experiment 1995: an overview
Authors:K N Bower  T W Choularton  M W Gallagher  R N Colvile  K M Beswick  D W F Inglis  C Bradbury  B G Martinsson  E Swietlicki  O H Berg  S -I Cederfelt  G Frank  J Zhou  J N Cape  M A Sutton  G G McFadyen  C Milford  W Birmili  B A Yuskiewicz  A Wiedensohler  F Stratmann  M Wendisch  A Berner  P Ctyroky  Z Galambos  S H Mesfin  U Dusek  C J Dore  D S Lee  S A Pepler  M Bizjak  B Divjak
Abstract:During March and April of 1995 a major international field project was conducted at the UMIST field station site on Great Dun Fell in Cumbria, Northern England. The hill cap cloud which frequently envelopes this site was used as a natural flow through reactor to examine the sensitivity of the cloud microphysics to the aerosol entering the cloud and also to investigate the effects of the cloud in changing the aerosol size distribution, chemical composition and associated optical properties. To investigate these processes, detailed measurements of the cloud water chemistry (including the chemistry of sulphur compounds, organic and inorganic oxidised nitrogen and ammonia), cloud microphysics and properties of the aerosol and trace gas concentrations upwind and downwind of the cap cloud were undertaken. It was found that the cloud droplet number was generally strongly correlated to aerosol number concentration, with up to 2000 activated droplets cm−3 being observed in the most polluted conditions. In such conditions it was inferred that hygroscopic organic compounds were important in the activation process. Often, the size distribution of the aerosol was substantially modified by the cloud processing, largely due to the aqueous phase oxidation of S(IV) to sulphate by hydrogen peroxide, but also through the uptake and fixing of gas phase nitric acid as nitrate, increasing the calculated optical scattering of the aerosol substantially (by up to 24%). New particle formation was also observed in the ultrafine aerosol mode (at about 5 nm) downwind of the cap cloud, particularly in conditions of low total aerosol surface area and in the presence of ammonia and HCl gases. This was seen to occur at night as well as during the day via a mechanism which is not yet understood. The implications of these results for parameterising aerosol growth in Global Climate Models are explored.
Keywords:Hill cap cloud  Multiple measuring sites  Atmospheric chemistry  Cloud processing  Aerosol modification  Ultrafine particle production  Sulphate  Nitrate  Organic species  Cloud microphysics  Cloud water chemistry  Aerosol size  Aerosol Chemistry  Aerosol hygroscopicity  Sulphur dioxide  Hydrogen peroxide  Ozone  Nitrogen oxides  Ammonia  Airflow  Modelling  Parameterisation  Climate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号