首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Do explosive ice ejections occur on Jupiter’s and Saturn’s satellites?
Authors:E G Fateev
Institution:(1) Institute of Applied Mechanics, Ural Division, Russian Academy of Sciences, Izhevsk, Russia
Abstract:The possibility of an explosive mechanical instability of ice (the Bridgman effect) in the thick icy shells of Jupiter’s and Saturn’s satellites is discussed in principle. The Bridgman effect is an explosive instability of dielectric solid bodies, which disintegrate into microscopic fragments under a quasistatic uniaxial loading in open compression systems at high pressures. The explosive instabilities of ice recently discovered in laboratory experiments with the Bridgman effect are also expected to occur in the extensive deep layers of the shells of icy planetary satellites (for example, in the case of episodical formation of major cracks in their lithospheres due to tidal forces, nonsynchronous rotation of the satellites, or extremely powerful impacts). The depths of occurrence of mechanically unstable ice in the thick crusts of Ganymede, Europa, and Titan, taken as examples, are crudely estimated using a pure-ice model without a possible ammonia admixture. The estimated thickness of the explosive-instability zone in the icy crust of Ganymede (under the assumption that the crust is ~75 km thick) ranges from ~7 to ~27 km at depths from ~40 to ~67 km, depending on the scaling parameter E = 0.2–1. This parameter relates the experimentally determined thicknesses of the ice samples in which the Bridgman effect occurs under laboratory conditions to the expected thicknesses of the explosively unstable layers in the envelopes of the icy satellites. Explosive effects are possible not throughout the entire thickness of the unstableice layer but only within some part of it, several centimeters to several tens of meters in thickness. According to the estimated location of the unstable layer in the crust of Europa (for an assumed crust thickness of ~30 km), such a layer can exist only at scaling factors E < 0.6 at depths ranging from ~21 to ~28 km. For Titan, if its crust is ~100 km thick, the thickness of the unstable layer is similarly estimated to range from ~15 to ~55 km at depths from ~37 to ~92 km for a scaling parameter E lying within the range 0.2–1. At E 0.2, which is quite possible, explosive instabilities of ice could also be expected on the Earth, in the icy shells of Antarctica and Greenland at depths from ~1 to ~1.5 km.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号