首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapidly crystallized garnet pyroxenite xenoliths possibly related to discrete nodules
Authors:F R Boyd  P H Nixon  N Z Boctor
Institution:(1) Geophysical Laboratory, Carnegie Institution of Washington, 20008 Washington, D.C., USA;(2) Department of Earth Sciences, The University, LS2 9JT Leeds, England
Abstract:Abundant small xenoliths in the Mzongwana kimberlite dike, Transkei, southern Africa, are predominantly pyroxenites composed of ilmenite, pyrope, orthopyroxene, clinopyroxene, rutile, and phlogopite; two of the xenoliths contain small amounts of Ti-rich amphibole near kaersutite in composition. A majority of the pyroxenites have polygonal granoblastic textures, but many have fasciculate, acicular and skeletal growths. The latter are believed to be the product of rapid crystallization because of similarities to textures of lunar and terrestrial volcanic rocks and quenched experimental charges. Segregations of garnet or ilmenite and pyroxene are common, and these are believed to have originated by crystallization from supersaturated magma. Pyroxenes in the rocks that appear to have crystallized most rapidly are richer in Al and Ti and the garnets are richer in Ti than comparable phases in the granoblastic rocks. The Mzongwana kimberlite is estimated to have a minimum depth of origin of 150 km by application of pyroxene thermobarometry to bronzite discrete nodules. The depth of crystallization of the pyroxenite xenoliths is believed to be near 100 km on the basis of comparison with phase relations determined by experiment. The pyroxenites appear to have crystallized from Ti-rich, olivine-free magma that was probably derived from a kimberlitic parent. A basaltic source (Karoo?), however, is not ruled out. Rapid crystallization of the pyroxenites at depth in the mantle may have occurred by intrusion in thin dikes some days prior to inclusion in erupting kimberlite. Alternatively, the kimberlite may have incorporated a pyroxenitic liquid, either derivative or unrelated, that crystallized through loss of volatiles and heat in contact with the expanding kimberlite vapor phase. The compositions of the minerals in the Mzongwana pyroxenites are similar to those of Fe-rich discrete nodules that occur in many other kimberlites. Perhaps the minerals in the pyroxenites and the discrete nodules have similar origins except that the Mzongwana pyroxenites crystallized more rapidly at shallower depths in the mantle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号