首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Climatological and hydrographic influences on nearshore food webs off the southeastern United States: bacterioplankton dynamics
Authors:Roger B Hanson  Lawrence R Pomeroy  Jack O Blanton  BA Biddanda  S Wainwright  SS Bishop  JA Yoder  LP Atkinson
Abstract:Bacterioplankton productivity, numbers, and cell specific activity were studied in nearshore waters of the southeastern U.S. continental shelf during seasons of maximum freshwater discharge. In April 1984, coastal waters were stratified from normal spring discharge and typical northeastward wind stress. In April 1985, shelf waters were vertically homogeneous due to below normal runoff and southwestward wind stress. In 1984, nearshore bacterial productivity ranged from 7.0 to 14.7 × 106 cells l−1 h−1 and midshelf rates were 40–50% less. In 1985, nearshore productivity ranged from 0.9 to 2.4 × 106 cells 1−1 h−1, and productivity was extremely patchy over the entire shelf. The cell-specific activity (thymidine incorporation per cell) suggests that although productivity was high in 1984, only a fraction of the bacterioplankton was actively growing or incorporating thymidine (0.9–2.9 × 10−21 mol cell−1 h−1). In 1985, a higher percentage of cells appeared to be active and incorporating thymidine (5–13 × 10−21mol cell−1h−1) even though productivity was low. Hydrographic conditions along the southeastern coastline may have had a significant impact on the overall community structure and carbon flow through the microbial food web. When coastal waters were stratified in 1984, bacterial biomass was a significant percentage (35–320%) of the phytoplankton biomass. During vertically homogeneous conditions of 1985, bacterial production and biomass were a small percentage (2–13%) of the phytoplankton production and biomass across the shelf. The interannual variation in the microbial food web was attributed to the interannual variability of the southeastern U.S. hydrology due to changes in freshwater discharge and wind direction and intensity. The ecological implications of these results extend to the potential impact of seasonal microbial food webs on nearshore allochothonous and autochothonous organics before removal from the southeastern U.S. coastline.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号