首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle precipitation in the south atlantic geomagnetic anomaly
Authors:DG Torr  Marsha R Torr  James CG Walker  RA Hoffman
Institution:Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, U.S.A.;Goddard Space Flight Centre, Greenbelt, Maryland 20771, U.S.A.
Abstract:A simple model of the motion of charged particles in the closed field line magnetic field for L ? 4·5 is used together with Injun 3 measurements of 40 keV precipitated electrons made in the northern hemisphere to estimate theoretically the extent of electron precipitation, the energy input and the 3914 Å airglow in the South Atlantic geomagnetic anomaly. Using average values of the northern hemisphere precipitated electron flux, two regions of significantly enhanced electron precipitation are found in the southern hemisphere. One occurs in the region 10–20°E and 40–50°S, with L ≈ 2, and the second near 30°E and 65°S, with L ≈ 4.5. Approximately 0.04 erg cm?2 sec?1 are deposited by 40 keV electrons for 50 per cent of the time in the first region and half that amount in the second. This increases to ~0·1 and 0·02 erg cm?2 sec?1 respectively for 15 per cent of the time for near sunspot minimum conditions. The results show a gradual increase in precipitation on the western side of the anomaly followed by a rapid increase and sudden cut-off in precipitation within a few degrees west of minimum B. The flux on L = 2 reaches a “spike” in the southern hemisphere ~f35 times greater than the average flux precipitated on L = 2 in the northern hemisphere. This increase in precipitation arises from the loss of “trapped” particles to the atmosphere where the mirror heights are lowest.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号