首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The period and Q of the Chandler wobble
Authors:Martin L Smith  F A Dahlen
Institution:Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Boulder, Colorado 80309, USA;Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
Abstract:Summary. We have extended our calculation of the theoretical period of the Chandler wobble to account for the non-hydrostatic portion of the Earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. We find the theoretical period of a realistic perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal days, which is 8.5 day shorter than the observed period of 435.2 day. Using Rayleigh's principle for a rotating Earth, we exploit this discrepancy together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. If Qμ in the mantle varies with frequency σ as σα between 30 s and 14 months and if Qμ in the lower mantle is of order 225 at 30 s, we find that 0.04 ρα≤ 0.11; if instead Qμ in the lower mantle is of order 350 near 200 s, we find that 0.11 ≤α≤ 0.19. In all cases these limits arise from exceeding the 68 per cent confidence limits of ± 2.6 day in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period we believe these limits to be robust.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号