首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Talklüfte im Zentralen Aaregranit der Schöllenen-Schlucht (Kanton Uri, Schweiz)
Authors:Stefan P Bucher  Simon Loew
Institution:1. zur Zeit: H?heweg 2, CH-6472, Erstfeld, Switzerland
2. Geologisches Institut, ETH Zürich, CH-8092, Zürich, Switzerland
Abstract:The Schöllenen Gorge in the Reuss Valley of the Central Swiss Alps (Figs. 1 and 2) is a famous tourist attraction and ideal location for the study of the properties and formation mechanisms of uplift and post-uplift unloading joints. The gorge is situated in the southern part of the Central Aar Granite, a granitic batholith which intruded about 300 million years ago. The magmatic fabric of this batholith (Fig. 4) has only been locally modified during Alpine tectonic and metamorphic overprinting, mainly in the vicinity of ductile-brittle shear zones. The up to 600 m deep gorge provides an ideal opportunity to study the complex fracture systems of the batholith, and tunnels of the Göschenen hydropower system allow the study of the fracture patterns below ground surface. Outcrop, tunnel and remote mapping of fractures in the study area lead to the recognition of two probably syntectonic (Oligocene-Miocene) joint sets (S and Q joints) and three generations of uplift and post-uplift joints (unloading joints). The frequent S joints run nearly parallel to the Alpine schistosity, i.e. striking approximately E–W and dipping steeply to the south (Figs. 5 and 7). The less frequent Q joints dip steeply to SW; the angle between the two joint sets ranges between 60 and 80 degrees. The first generation of uplift joints (called L- joints) is subhorizontal and probably related to Alpine extensional veins filled with fissure quartz (Zerrklüfte). These veins formed during the late Alpine (Miocene) uplift of the Aar Granite (Mullis 1996). A first generation of post-uplift joints (T1 joints) strikes parallel to the valley axes and dip with 30–45 degrees towards the valley bottom. This set probably formed during an earlier stage of glacial valley erosion in the Pleistocene (Figs. 9–11). The youngest generation of post-uplift joints (T2 joints) is orientated parallel to the present ground surface of the Schöllenen Gorge and to erosional surfaces with glacial striations (Figs. 9–11 and 21). The frequency and size of these joints seems to decrease with depth below the ground surface. In one tunnel, post-uplift joints could be observed within a horizontal and vertical distance from the ground surface of 150 and 80 meters. Post-uplift joints only form in granites with a primary fabric that has not been intensively overprinted by brittle or ductile Alpine tectonic deformations. Fractographic investigations, i.e. investigations of crack propagation markers on joint surfaces, confirm this relative age of the fracture sets and give valuable insights into the formation mechanisms of post-uplift joints. Post-uplift joints show intense and 5–10 meter long plumose markings and only rarely arrest lines (Figs. 18a and 20). It can be shown that sets of post-uplift joints join at pre-existing (uplift and syntectonic) fractures to form large (50–100 m sized) curved exfoliation structures (Fig. 19). The growth direction of the post-uplift joints is mainly in subhorizontal directions (Figs. 19 and 20). Fractographic markings, spatial and depth distributions as well as the relative size of post-uplift fractures are explained within the mechanical framework of uniaxial and biaxial compression tests on intact granite samples and samples with artificial flaws. Most of these experiments have been carried out in the framework of studies related to brittle failure (spalling and rockbursting) around deep mining drifts and tunnels in hard rock’s (e.g. Hoek & Bieniawski 1965, Read et al. 1998, Eberhardt et al. 1999). As suggested already by Holzhausen & Johnson (1979), post-uplift fractures form as extension fractures in a compressive stress field with small confining stress. Laboratory tests carried out on artificial Griffith cracks suggest that the macroscopic fracture size is mainly controlled by the ratio of the smallest to the largest principal stress (σ31), the so-called spalling limit. In steep slopes this ratio should increase with depth below ground surface (Fig. 24c), leading to smaller exfoliation fractures with increasing depth. The spatial occurrence of post-uplift fractures along the surface topography is a function of the deviatoric stress level (Fig. 24a) and/or the development of local tensile stresses (Fig. 24d). Preliminary numerical simulations of these failure criteria in a multistage glacial erosion model (Fig. 23) allow some of the observed patterns of post-uplift fracture distributions to be reproduced. post-uplift joints in steep glacial valleys play an important role in valley erosion and in connection with the risk of rock falls, the safety of traffic corridors, and the inflow of water to near-surface tunnels and hydropower caverns. The depth dependant sizes, frequencies and hydraulic conductivities of these fractures can be directly related to the occurrence and magnitudes of the corresponding hazards.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号