首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of CO on Titan
Authors:Ah-San WongChristopher G Morgan  Yuk L YungTobias Owen
Institution:
  • a Division of Geological and Planetary Sciences, California Institute of Technology, 150-21, Pasadena, California, 91125, f1asw@gps.caltech.eduf1
  • b Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, 99822
  • Abstract:The early evolution of Titan's atmosphere is expected to produce enrichment in the heavy isotopomers of CO, 13CO and C18O, relative to 12C16O. However, the original isotopic signatures may be altered by photochemical reactions. This paper explains why there is no isotopic enrichment in C in Titan's atmosphere, despite significant enrichment of heavy H, N, and O isotopes. We show that there is a rapid exchange of C atoms between the CH4 and CO reservoirs, mediated by the reaction 1CH2+*CO→1*CH2+CO, where *C is 13C. Based on recent laboratory measurements, we estimate the rate coefficient for this reaction to be 3.2×10−12 cm3 s−1 at the temperature appropriate for the upper atmosphere of Titan. We investigate the isotopic dilution of CO using the Caltech/JPL one-dimensional photochemical model of Titan. Our model suggests that the time constant for isotopic exchange through the above reaction is about 800 Myr, which is significantly shorter than the age of Titan, and therefore any original isotopic enhancement of 13C in CO may have been diluted by the exchange process. In addition, a plausible model for the evolution history of CO on Titan after the initial escape is proposed.
    Keywords:Titan
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号