首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3-D structures
Authors:J -C Park  M -H Kim  H Miyata  H -H Chun
Institution:a Department of Naval Architecture and Ocean Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Pusan, South Korea;b Department of Civil Engineering, Offshore Technology Research Center, Texas A&M University, College Station, TX 77843, USA;c Department of Environmental and Ocean Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
Abstract:A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.
Keywords:Arctic structures  Wave run-up  Higher-harmonic forces  Fully nonlinear free-surface condition  Marker-density function  Finite-difference method  Navier–  Stokes equation  Numerical wave tank  Backstep flow  Broken dam
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号