首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical tides in close binary systems
Authors:Zdeněk Kopal
Institution:(1) Dept. of Astronomy, University of Manchester, England
Abstract:Differential equations governing the dynamical tides in close binary systems consisting of centrally condensed components of viscous gas are split up (Section 2) in their real and imaginary parts, the ratio of which defines the tidal lag. In Sections 3 and 4 these equations will be particularized to a case in which the central mass-point of each star is surrounded by an evanescent envelope the density of which decreases as the inverse square of the central distance. It is shown that self-gravitating configurations built up in accordance with this model are incapable of performing free nonradial oscillations with a frequency ohgr comprised between 0 les ohgr2 les infin; but explicit expressions for forced oscillations representing dynamical tides are given for an arbitrary form of the external field of force. Equations for the imaginary components of the displacement, constructed for the same model in Section 4, disclose that if the viscosity of stellar material is identified with that of hydrogen plasma, the tidal lag due to a viscous dissipation of kinetic energy may produce dynamical effects, the cumulative outcome of which becomes appreciable on the Kelvin time-scale, but over short intervals of time their stationary photometric effects should be negligible. The latter can become observationally significant only for stars in which turbulent viscosity under near-adiabatic conditions becomes and important factor.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号