首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High diffraction efficiency, broadband, diffraction crystals for use in crystal diffraction lenses
Authors:Robert K Smither  Khaliefeh Abu Saleem  Dante E Roa  Mark A Beno  Peter Von Ballmoos  Gerry K Skinner
Institution:(1) Argonne National laboratory, Argonne, USA
Abstract:A major goal of the MAX program is to detect and measure gamma rays produced following the nuclear reactions that take place in a supernova explosion. To detect a reasonable number of supernovae, sensitivities of the order of a few times 10-7 γ cm-2sec-1 are needed – much better than possible with current instruments. The approach in the MAX program is to use a crystal diffraction lens to collect photons over a large area and concentrate them on a small well-shielded detector, greatly improving the signal to noise ratio. The crystals need to have both high diffraction efficiency and a relatively broad energy bandwidth. With mosaic crystals there is a trade-off between bandwidth and diffraction efficiency – one can have either high efficiency or large bandwidth, but not both without losing too much intensity through atomic absorption. A recent breakthrough in our understanding of crystal diffraction for high-energy gamma rays has made it possible to develop crystals that have both high diffraction efficiency and a relatively broad energy bandwidth. These crystals have near perfect crystal structure, but the crystalline planes are slightly curved. Such curved planes can be obtained in 3 different ways, by using mixed crystals with a composition gradient, by applying a thermal gradient, and by mechanically bending a near perfect crystal. A series of experiments have been performed on all three types of crystals using high-energy x-ray beams from the Advanced Photon Source at the Argonne National Laboratory. Experiments performed at 3 energies, 93 keV, 123 keV and 153 keV, with both the thermal gradient Si crystals and with the mechanically bent Si crystals, demonstrated that one can achieve diffraction efficiencies approaching 100% with moderate energy bandwidths (ΔE/E = 1.4%) and low atomic absorption (transmission = 0.65), in excellent agreement with theory. The use of this type of diffraction crystal is expected to increase the sensitivity of gamma ray telescopes by a factor of 5 over that possible with normal mosaic crystals.
Keywords:gamma-ray astronomy  crystal diffraction  thermal gradient  bent crystal
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号