首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diagenesis of Pennsylvanian phylloid algal mounds from the southern Cantabrian Zone (Spain)
Authors:D Corrochano  I Armenteros
Institution:1.E.U.M. Zamora, Departamento de Didáctica de las Matemática y de las Ciencias Experimentales,Universidad de Salamanca,Zamora,Spain;2.Facultad de Ciencias, Departamento de Geología,Universidad de Salamanca,Salamanca,Spain
Abstract:The Pennsylvanian phylloid algal mounds exposed in the Cervatina Limestone of the Cantabrian Zone (NW Spain) developed during the highstands of high-frequency shallowing-upward cycles and lack evidence of subaerial exposure at their tops. Mound core facies are composed of massive bafflestones with variable amounts of calcite cements and anchicodiacean phylloid algae with cyathiform thalli preserved in growth position. Through standard petrographic, isotopic (δ18O and δ13C), major and trace element (Ca, Mg, Fe, Mn, Sr) and cathodoluminescence analyses, five calcite cement phases (cement 1 (C1)–cement 5 (C5)) have been identified filling primary and secondary pores. Early marine diagenesis is represented by micritization and non-luminescent to mottled-dull luminescent high-Mg calcite fibrous marine cement (C1). A dissolution phase then occurred and created vuggy and moldic pores. Based on the absence of field or petrographical or geochemical evidence of exposure, it is inferred that dissolution occurred in near-surface undersaturated marine waters with respect to aragonite related to progressive organic matter oxidation. Secondary porosity was subsequently filled by dull-bright-dull bladed high-Mg calcite (C2), which precipitated in the early shallow burial from marine-derived pore waters. Remaining porosity was occluded by shallow-burial precipitates consisting of non-luminescent scalenohedral low-Mg calcite (C3) followed by non-ferroan dull luminescent calcite spar (C4). Latter phases of calcite spar exhibiting non- and dull luminescence (C5) are associated with burial calcite veins. Low δ18O values (around ?8‰), moderately depleted δ13C values (around 0.5‰) and the homogeneity of trace element contents of carbonate matrix, cements and vein-filling calcites suggest burial isotopic re-equilibration and recrystallization, probably in Early Permian times during post-thrusting orocline formation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号