首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Persistence of tidally-oriented vertical migration by zooplankton in a temperate estuary
Authors:W J Kimmerer  J R Burau  W A Bennett
Institution:1. Romberg Tiburon Center, San Francisco State University, 3152 Paradise Drive, 94920, Tiburon, California
2. U.S. Geological Survey, Placer Hall, 6000 J Street, 95819-6129, Sacramento, California
3. Bodega Marine Laboratory, University of California at Davis, P.O. Box 247, 94923, Bodega Bay, California
Abstract:Tidal vertical migration by zooplankton is a common phenomenon in estuaries, usually associated with landward movement of meroplankton or position maintenance of holoplankton. Little is known about the persistence of this behavior, its spatial variability, or its response to changing environmental conditions. We extended a previous study of tidal movements of zooplankton in the low-salinity zone (LSZ) of the San Francisco estuary in 1994 to include data from two additional years with very different hydrology. Freshwater flow during sampling in 1995 was about 7-fold greater than in 1994; the LSZ was about 28 km further seaward, and gravitational circulation in the LSZ was strong. In 1996 freshwater flow and LSZ position were intermediate but, because the LSZ was in shallower water in 1996 than in 1995, gravitational circulation was uncommon. Behavior of copepods in both years was similar to that reported in 1994 with some tidal migration observed during most cruises. An exception was the introduced carnivorous copepodTortanus dextrilobatus, which did not migrate and maintained a position deep in the water column (1995 only). In 1996, mysids mainly stayed near the bottom with evidence for vertical migration from only 1 of 6 data sets, whereas amphipods migrated slightly on a diel schedule; these behaviors contrasted with the tidal migration observed in 1994. The bay shrimpCrangon franciscorum did not appear to migrate, but was more abundant in the water column during both ebb and flood, suggesting passive vertical dispersal. Zooplankton did not appear to maintain position by interactions with lateral circulation cells. The results for copepods suggest rigidity in behavior with little or no relaxation of the vertical movement in 1995 when strong gravitational circulation would have made upstream movement relatively easy. Mysids and amphipods altered their behavior depending on local conditions related to freshwater flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号