首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrology,geochemistry and tectonic setting of the Khoy ophiolite,northwest Iran: implications for Tethyan tectonics
Institution:1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, People''s Republic of China;2. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China;3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, People''s Republic of China
Abstract:The Khoy ophiolite in northwestern Iran represents a remnant of oceanic lithosphere formed in the Mesozoic Neo-Tethys. This northwest–southeast trending ophiolite complex consists from bottom to top (east to west) of a well-defined basal metamorphic zone, peridotites (dunite, harzburgite) and serpentinized peridotite, gabbros, sheeted dikes, pillow and massive lava flows, and pelagic sedimentary rocks, including radiolarian chert. The rocks of the metamorphic zone have an inverse thermal gradient from amphibolite facies to greenschist facies. The high-grade metamorphic rocks are immediately adjacent to the peridotite and the gabbros and the low-grade rocks are in contact with the Precambrian Kahar Formation. Based on mantle-normalized incompatible trace element diagrams there are two distinct types of basalt flows present at the Khoy ophiolite: (1) massive basalts that have patterns virtually identical to E-MORB, and (2) pillow basalts that have more primitive chemical composition whose trace element patterns plot between E-MORB and N-MORB. The chondrite-normalized REE patterns for the pillow basalts are LREE-depleted (LaN/SmN)ave=0.70], similar to patterns for the mean diabase composition for the Oman ophiolite and LREE-depleted basalts of the Band-e-Zeyarat ophiolite of southern Iran. The REE patterns for the massive basalts are similar in general REE abundances to the pillow basalt patterns, but they are slightly LREE-enriched (LaN/SmN)ave=1.09] and their patterns cross those of the pillow basalts. The REE patterns for the gabbros and diorites indicates that the crustal-suite rocks were most likely derived by a process of fractional crystallization from a common basaltic melt. This basaltic melt was most likely generated by approx. 20–25% partial melting of a simple lherzolite source and had REE concentrations of roughly 10× chondrite. A comparison between the results from the Khoy ophiolite and the data from other Iranian ophiolites reveals geochemical evidence to suggest a tectonic link between the Khoy ophiolite and the rest of the Iranian ophiolites. Our results suggest that Khoy ophiolite is equivalent to the inner group of Iranian ophiolites (e.g. Nain, Shahr-Babak, Sabzevar, Tchehel Kureh and Band-e-Zeyarat) and was formed as a result of closure of the northwestern branch of a narrow Mesozoic seaway which once surrounded the Central Iranian microcontinent.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号