首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-pressure crystal chemistry of MgSiO3 perovskite
Authors:Nancy L Ross  Robert M Hazen
Institution:1. Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, 20015, Washington, DC, USA
Abstract:A high-pressure single-crystal x-ray diffraction study of perovskite-type MgSiO3 has been completed to 12.6 GPa. The compressibility of MgSiO3 perovskite is anisotropic with b approximately 23% less compressible than a or c which have similar compressibilities. The observed unit cell compression gives a bulk modulus of 254 GPa using a Birch-Murnaghan equation of state with Kprime set equal to 4 and V/V 0 at room pressure equal to one. Between room pressure and 5 GPa, the primary response of the structure to pressure is compression of the Mg-O and Si-O bonds. Above 5 GPa, the SiO6 octahedra tilt, particularly in the bc]-plane. The distortion of the MgO12 site increases under compression. The variation of the O(2)-O(2)-O(2) angles and bondlength distortion of the MgO12 site with pressure in MgSiO3 perovskite follow trends observed in GdFeO3type perovskites with increasing distortion. Such trends might be useful for predicting distortions in GdFeO3-type perovskites as a function of pressure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号