首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Supercell simulations with simple ice parameterization
Authors:N Tartaglione  A Buzzi  M Fantini
Institution:(1) Present address: FISBAT-CNR, Via Gobetti 101, I-40129 Bologna, Italia
Abstract:Summary A three-dimensional cloud model derived from the Klemp-Wilhelmson model has been used to perform simulations of a right-moving supercell with the purpose of testing the effects of terminal velocity of precipitation on the storm dynamics. The model has no ice variables and computes a fall velocity for condensed water. We simulate one of the effects of ice presence, without including phase transition, by reducing the fall velocity of the precipitation in the coldest cloud layers. The reduction of precipitation terminal velocity is shown to have a strong influence on supercell dynamics and to be responsible for nearly all the improvements in the simulation of supercells that are obtained with full ice microphysics. This includes the transition to tornadic phase, which is sharper than in the case of a pure rain supercell. The vertical component of vorticity is seen to increase at all levels, as observed in real storms, instead of just at the surface as is common in simulations with no ice phase.Our results indicate the primary importance of terminal fall speed among the effects due to the presence of ice.With 13 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号