首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of exsolution in sodic pyroxenes
Authors:Michael A Carpenter
Institution:(1) Department of Geological Sciences, Hoffman Laboratory, 20 Oxford St., 02138 Cambridge, Massachusetts, USA
Abstract:The free energy curves for simple binary solid solutions with limited miscibility or atomic ordering have been combined to predict the phase relations and exsolution mechanisms for a system in which both ordering and exsolution are possible. The nature of the ordering process affects which exsolution mechanisms may be used. If the ordering is second (or higher) order in character then continuous mechanisms predominate and a ‘conditional spinodal’ (Alien and Cahn, 1976) can be described which operates between ordered and disordered end members. For a first order case, the ordered phase can only precipitate a disordered phase by nucleation and growth. Microstructures in omphacites observed by transmission electron microscopy include exsolution lamellae and antiphase domains and the relations between them in selected specimens have been used to interpret the exsolution mechanisms which operated under geological conditions. It appears that most omphacites undergo cation ordering, and then remain homogeneous or exsolve a disordered pyroxene by spinodal decomposition. The predominance of continuous mechanisms has been used to indicate that the C2/cP2/n transformation may be second (or higher) order in character. A possible phase diagram for jadeite-augite is presented. It is based on the idea that there should be limited miscibility between the disordered end members at low temperatures and that the cation ordering at intermediate compositions (omphacite) is superimposed on a solvus. It is adequate to explain many of the observed microstructures and fits with petrographic evidence of broad two phase fields between impure jadeite and omphacite and between omphacite and sodic augite. The effect of adding acmite is analogous to increasing temperature so that the phase relations for jadeite-acmite-augite can also be predicted.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号