首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-similar cataclasis in the formation of fault gouge
Authors:Charles G Sammis  Robert H Osborne  J Lawford Anderson  Mavonwe Banerdt  Patricia White
Institution:(1) Department of Geological Sciences, University of Southern California, 90089-0741 Los Angeles, CA
Abstract:Particle-size distributions have been determined for gouge formed by the fresh fracture of granodiorite from the Sierra Nevada batholith, for Pelona schist from the San Andreas fault zone in southern California, and for Berea sandstone from Berea, Ohio, under a variety of triaxial stress states. The finer fractions of the gouge derived from granodiorite and schist are consistent with either a self-similar or a logarithmic normal distribution, whereas the gouge from sandstone is not. Sandstone gouges are texturally similar to the disaggregated protolith, with comminution limited to the polycrystalline fragments and dominantly calcite cement. All three rock types produced significantly less gouge at higher confining pressures, but only the granodiorite showed a significant reduction in particle size with increased confining pressure. Comparison with natural gouges showed that gouges in crystalline rocks from the San Andreas fault zone also tend to be described by either a self-similar or log-normal particle distribution, with a significant reduction in particle size with increased confining pressure (depth). Natural gouges formed in porous sandstone do not follow either a self-similar or a log-normal distribution. Rather, these are represented by mixed log-normal distributions. These textural characteristics are interpreted in terms of the suppression of axial microfracturing by confining pressure and the accommodation of finite strain by scale-independent comminution.
Keywords:Cataclasis  gouge  self-similar  fractal  fracture  faulting
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号