首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies
Authors:K L Hondula  M L Pace  J J Cole  R D Batt
Institution:1. Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
2. Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
3. Center for Limnology, University of Wisconsin, Madison, WI, 53706, USA
Abstract:Large differences in δ 2H of primary producers between aquatic and terrestrial ecosystems are used to identify subsidies, discriminate organic matter sources, and reduce uncertainty in food web studies. Previous investigations of hydrogen isotope ratios suggest there may be predictable differences between the δ 2H of water and organic matter for different types of primary producers. We define the difference in the net isotopic discrimination between water and bulk organic matter (om) as: ΔH = (δ 2Hom ? δ 2Hwater) ÷ (1 + δ 2Hwater ÷ 1,000). We summarized ΔH values from published literature and we measured the δ 2H of water and primary producers in order to compare ΔH among aquatic and terrestrial primary producers. Measurements were made from three water body types (lake, river, coastal lagoon) and their associated watersheds. Although we predicted a large and equivalent net isotopic discrimination for aquatic primary producers, we found considerable variability among groups of aquatic producers. Macroalgae, benthic microalgae, and phytoplankton had more negative ΔH values (i.e. greater isotopic discrimination) than both aquatic macrophytes and terrestrial vegetation. The more positive δ 2Hom and hence lower ΔH of terrestrial vegetation was expected due to relative increases in the heavier isotope, deuterium, during transpiration. However, the more positive values of δ 2Hom and relatively low ΔH in aquatic macrophytes, even submerged species, was unexpected. Marine macroalgae had high variability in δ 2Hom as a group, but low variability within distinct species. Variability among types of primary producers in δ 2Hom and in ΔH should be assessed when hydrogen is used in isotopic studies of food webs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号