首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scattering of seismic waves by cracks in multi-layered geological regions: II. Numerical results
Authors:Petia S Dineva  George D Manolis
Abstract:The mechanical model for plane strain, time-harmonic seismic wave propagation problems in cracked, multi-layered geological regions with surface topography and non-parallel interfaces was described in the first part of this work. Here, this model is used to investigate the response of such a region to the presence of traveling elastic waves generated by a seismic source. The computational methodology that was developed in the first part is based on a combination of both the regular (displacement-based) and the hypersingular (traction-based) Boundary Integral Equation Method (BIEM). First, the accuracy and convergence characteristics of this hybrid BIEM are studied. Then, a series of problems involving four different configurations of a reference geological deposit with both interface and internal cracks are solved, for a loading that is due to a seismically-induced pressure wave propagating upwards from the underlying rigid half-plane. The purpose of the numerical study is to investigate the influence of various key parameters of the problem, such as frequency and incidence angle of the incoming wave, size of the surface relief, location and size of the buried cracks, interaction effects between cracks and finally the presence of layers, on both the scattered displacement field and the stress concentration field.
Keywords:Canyon topography  Elastic waves  Interface and internal crack interaction  Multi-layered geological media  Scattered wave fields  Stress intensity factor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号