首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MAX, a Laue diffraction lens for nuclear astrophysics
Authors:N Barrière  P von Ballmoos  H Halloin  N Abrosimov  J M Alvarez  K Andersen  P Bastie  S Boggs  P Courtois  T Courvoisier  M Harris  M Hernanz  J Isern  P Jean  J Knödlseder  G Skinner  B Smither  P Ubertini  G Vedrenne  G Weidenspointner  C Wunderer
Institution:(1) Centre d’Etude Spatiale des Rayonnements, 9, avenue du Colonel Roche, BP 4143, 31028 Toulouse Cedex 4, France;(2) Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France;(3) Institut für Kristallzüchtung, Max-Born-Strasse 2, D-12489 Berlin, Germany;(4) APC, collège de France, 11, place Marcelin Berthelot, 75231 Paris, France;(5) Space Sciences Laboratory #7450, University of California, Berkeley, CA 94720-7450, USA;(6) ISDC, Chemin d’Ecogia 16, 1290 Versoix, Switzerland;(7) IEEC-CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain;(8) Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA;(9) Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
Abstract:The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising. PACS: 95.55.Ka, 29.30.Kv, 61.10.-i
Keywords:Instrumentation: Gamma-ray Laue lens  Gamma-ray astrophysics  Mosaic crystals
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号