首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrology and geochemistry of the Loch Ba ring-dyke,Mull (N.W. Scotland): an example of the extreme differentiation of tholeiitic magmas
Authors:R S J Sparks
Institution:(1) Department of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, England
Abstract:The Loch Ba ring-dyke in the Tertiary igneous central complex of Mull, N.W. Scotland is composed predominantly of a banded rhyolitic welded tuff. The rhyolite contains numerous inclusions of dark aphanitic rock. The textural relationships between the different rocks indicate rapid, violent and intimate mixing during emplacement of the dyke. The dark glassy component varies continuously from basaltic andesite to andesite, dacite and rhyolite. These glasses are enriched in FeO and depleted in MgO at a given SiO2 content in comparison to other tholeiitic highly differentiated volcanic rocks. The rhyolite contains an average of 4% phenocrysts and is associated with the mineral assemblage plagioclase (An32 to An21)-sanidine(Or50–60)-hedenbergite-fayalite-magnetite-ilmenite-apatite-zircon. Mineral aggregates involving either plagioclase-hedenbergite-ilmenite or plagioclase-fayalite-magnetite are common, but aggregates containing fayalite and hedenbergite together are scarce. The dark glassy components are either phenocryst free or contain less than 0.2% phenocrysts. The main phenocrysts associated with the dark glasses are plagioclase (An65-An30), high calcium clinopyroxene ranging continuously from augite to pure hedenbergite, pigeonite, magnetite, ilmenite and rare apatite. Zoning in minerals is generally weak or absent. The plagioclase feldspar, high calcium clinopyroxenes and pigeonites have similar compositional ranges to the minerals observed in the Middle and Upper Zones of the Skaergaard Intrusion. The mineral compositions are systematically related to SiO2 content and Mg number of the glasses. The data demonstrate that mineral compositions and assemblages similar to the Skaergaard form from silica-rich andesitic to rhyolitic liquids. The various mafic glasses are interpreted to have been derived from a zoned magma chamber underlying an upper layer of rhyolitic magma. Differentiation is attributed to fractional crystallization of the observed mineral assemblages causing SiO2 enrichment and FeO depletion. However, glasses with less than 57% SiO2 have unusual compositions with very low MgO and P2O5 as well as variable Al2O3 and TiO2. Their peculiarities could be explained by andesitic magmas assimilating cumulate mineral aggregates precipitated from more differentiated dacite and rhyolite magmas. The bulk compositions of these cumulates have high FeO, low SiO2 and negligible MgO and P2O5. It is suggested that the high density of the mineral aggregates containing fayalite-hedenbergite-magnetite and ilmenite caused them to settle through the zoned chamber to be assimilated by high temperature, less differentiated magmas.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号