首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of cyclone Nilam on tropical lower atmospheric dynamics
Authors:P Vinay Kumar  Gopa Dutta  M V Ratnam  E Krishna  B Bapiraju  B Venkateswara Rao  Salauddin Mohammad
Institution:1.Vignana Bharathi Institute of Technology,Hyderabad,India;2.National Atmospheric Research Laboratory,Gadanki,India;3.Jawaharlal Nehru Technological University,Hyderabad,India
Abstract:A deep depression formed over the Bay of Bengal on 28 October 2012, and developed into a cyclonic storm. After landfall near the south coast of Chennai, cyclone Nilam moved north-northwestwards. Coordinated experiments were conducted from the Indian stations of Gadanki (13.5°N, 79.2°E) and Hyderabad (17.4°N, 78.5°E) to study the modification of gravity-wave activity and turbulence by cyclone Nilam, using GPS radiosonde and mesosphere-stratosphere-troposphere radar data. The horizontal velocities underwent large changes during the closest approach of the storm to the experimental sites. Hodograph analysis revealed that inertia gravity waves (IGWs) associated with the cyclone changed their directions from northeast (control time) to northwest following the path of the cyclone. The momentum flux of IGWs and short-period gravity waves (1-8 h) enhanced prior to, and during, the passage of the storm (0.05 m2 s-2 and 0.3 m2 s-2, respectively), compared to the flux after its passage. The corresponding body forces underwent similar changes, with values ranging between 2-4 m s-1 d-1 and 12-15 m s-1 d-1. The turbulence refractivity structure constant (Cn2) showed large values below 10 km before the passage of the cyclone when humidity in the region was very high. Turbulence and humidity reduced during the passage of the storm when a turbulent layer at ∼17 km became more intense. Turbulence in the lower troposphere and near the tropopause became weak after the passage of the cyclone.
Keywords:inertia gravity waves  turbulence  momentum flux  convective process  tropical cyclone
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号