首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FREQUENCY WAVENUMBER APPROACH OF THE τ-p TRANSFORM: SOME APPLICATIONS IN SEISMIC DATA PROCESSING*
Authors:SD BENOLIEL  WA SCHNEIDER  RN SHURTLEFF
Abstract:The τ-p transform is an invertible transformation of seismic shot records expressed as a function of time and offset into the τ (intercept time) and p (ray parameter) domain. The τ-p transform is derived from the solution of the wave equation for a point source in a three-dimensional, vertically non-homogeneous medium and therefore is a true amplitude process for the assumed model. The main advantage of this transformation is to present a point source shot record as a series of plane wave experiments. The asymptotic expansion of this transformation is found to be useful in reflection seismic data processing. The τ-p and frequency-wavenumber (or f-k) processes are closely related. Indeed, the τ-p process embodies the frequency-wavenumber transformation, so the use of this technique suffers the same limitations as the f-k technique. In particular, the wavefield must be sampled with sufficient spatial density to avoid wavenumber aliasing. The computation of this transform and its inverse transform consists of a two-dimensional Fast Fourier Transform followed by an interpolation, then by an inverse-time Fast Fourier Transform. This technique is extended from a vertically inhomogeneous three-dimensional medium to a vertically and laterally inhomogeneous three-dimensional medium. The τ-p transform may create artifacts (truncation and aliasing effects) which can be reduced by a finer spatial density of geophone groups by a balancing of the seismic data and by a tapering of the extremities of the seismic data. The τ-p domain is used as a temporary domain where the attack of coherent noise is well addressed; this technique can be viewed as ‘time-variant f-k filtering’. In addition, the process of deconvolution and multiple suppression in the τ-p domain is at least as well addressed as in the time-offset domain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号