首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adaptive finite element simulation of Stokes flow in porous media
Institution:166121. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA
Abstract:The Stokes problem describes flow of an incompressible constant-viscosity fluid when the Reynolds number is small so that inertial and transient-time effects are negligible. The numerical solution of the Stokes problem requires special care, since classical finite element discretization schemes, such as piecewise linear interpolation for both the velocity and the pressure, fail to perform. Even when an appropriate scheme is adopted, the grid must be selected so that the error is as small as possible. Much of the challenge in solving Stokes problems is how to account for complex geometry and to capture important features such as flow separation. This paper applies adaptive mesh techniques, using a posteriori error estimates, in the finite element solution of the Stokes equations that model flow at pore scales. Different selected numerical test cases associated with various porous geometrics are presented and discussed to demonstrate the accuracy and efficiency of our methodology.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号