首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Uncoupling of coupled flows in soil—a finite element method
Authors:Daichao Sheng  Kennet Axelsson
Abstract:Coupled flow of water, chemicals, heat and electrical potential in soil are of significance in a variety of circumstances. The problem is characterized by the coupling between different flows, i.e. a flow of one type driven by gradients of other types, and by the dual nature of certain flows, i.e. combined convection and conduction. Effective numerical solutions to the problem are challenged due to the coupling and the dual nature. In this paper, we first present a general expression that can be used to represent various types of coupled flows in soil. A finite element method is then proposed to solve the generalized coupled flows of convection-conduction pattern. The unknown vector is first decomposed into two parts, a convective part forming a hyperbolic system and a conductive part forming a parabolic system. At each time step, the hyperbolic system is solved analytically to give an initial solution. To solve the multi-dimensional hyperbolic system, we assume that a common eigenspace exists for the coefficient matrices, so that the system can be uncoupled by transforming the unknown vector to the common eigenspace. The uncoupled system is solved by the method of characteristics. Using the solution of the hyperbolic system as the initial condition, we then solve the parabolic system by a Galerkin finite element method for space discretization and a finite difference scheme for time stepping. The proposed technique can be used for solving multi-dimensional, transient, coupled or simultaneous flows of convection-conduction type. Application to a flow example shows that the technique indeed exhibits optimality in convergence and in stability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号