首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Initiation and growth of salt-based thrust belts on passive margins: results from physical models
Authors:Tim P Dooley  Martin P A Jackson  Michael R Hudec
Institution:Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station, Austin, TX, USA
Abstract:Scaled sandbox models simulated primary controls on the kinematics of the early structural evolution of salt‐detached, gravity‐driven thrust belts on passive margins. Models had a neutral‐density, brittle overburden overlying a viscous décollement layer. Deformation created linked extension–translation–shortening systems. The location of initial brittle failure of the overburden was sensitive to perturbations at the base of the salt. Salt pinch‐out determined the seaward limit of the thrust belt. The thrust belts were dominated by pop‐up structures or detachment folds cut by break thrusts. Pop‐ups were separated by flat‐bottomed synclines that were partially overthrust. Above a uniformly dipping basement, thrusts initiated at the salt pinch‐out then consistently broke landward. In contrast, thrust belts above a seaward‐flattening hinged basement nucleated above the hinge and then spread both seaward and landward. The seaward‐dipping taper of these thrust belts was much lower than typical, frictional, Coulomb‐wedge models. Towards the salt pinch‐out, frictional resistance increased, thrusts verged strongly seawards and the dip of the taper reversed as the leading thrust overrode this pinch‐out. We attribute the geometry of these thrust belts to several causes. (1) Low friction of the basal décollement favours near‐symmetric pop‐ups. (2) Mobile salt migrates away from local loads created by overthrusting, which reduces the seaward taper of the thrust belt. (3) In this gravity‐driven system, shortening quickly spreads to form wide thrust belts, in which most of the strain overlapped in time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号