首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vertical structure of tidal current in a typically coastal raft-culture area
Authors:X Fan  H Wei  Y Yuan  L Zhao
Institution:1. Key Lab of Physical Oceanography, State Education Ministry, Ocean University of China, Qingdao 266100, China;2. College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
Abstract:In this paper vertical structure of tidal current in a typically coastal raft-culture area is discussed by field measurement and a numerical model. The observations show that the vertical structure changed dramatically. A tidal surface boundary layer (SBL) is well formed due to the frictional effects induced by extensive, high-density suspended culture as surface obstruction. Both the aquaculture drag and the bottom friction are much higher than those in non-raft-culture areas, and show an obvious variation with tidal flow. The significant earlier ebbing and earlier flooding appear in the upper water column instead of the seabed. And the maximal phase lag is about 1 h within one tide cycle. A 1D hydrodynamic model was modified to include the SBL and parameterized with the field data. It replicated the observed velocity profile and was then used to investigate the impacts of varying culture density and bottom friction on the vertical tidal-current structure. Modeling results indicate that the surface current velocity was largely damped because culture activities enhanced the frictional effects on flow intensively. The magnitude and vertical structure of tidal current are determined together with aquaculture drag and bottom friction. In addition, the vertical velocity structure has a nonlinear trend along with culture density and bottom friction. This study is a theoretical foundation for optimizing aquaculture configuration through regulating culture density and species distribution.
Keywords:Vertical structure of tidal current  Aquaculture drag  Raft-culture area  Sanggou Bay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号