首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Systemic impacts of climate change on an eroding coastal region over the twenty-first century
Authors:Mark E Dickson  Mike J A Walkden  Jim W Hall
Institution:(1) National Institute of Water and Atmospheric Research, PO Box 8602, Riccarton, Christchurch, New Zealand;(2) Tyndall Centre for Climate Change Research, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
Abstract:A numerical model detailing the functioning and emergent behaviour of an eroding coastal system is described. Model output from a 50-km study region centred on the soft-rock shore of northeast Norfolk was verified through comparison with cliff recession rates that were extracted from historical maps spanning more than a century. Predictions were then made for the period 2000 to 2100 under combined climatic change and management scenarios. For the scenarios evaluated, the model was relatively insensitive to increases in offshore wave height and moderately sensitive to changes in wave direction, but the most important effects were associated with accelerated sea-level rise (SLR). In contrast to predictions made using a modified version of the Bruun rule, the systems model predicted rather complex responses to SLR. For instance, on some sectors of coast, whereas the Bruun rule predicted increased recession under accelerated SLR, the systems model actually predicted progradation owing to the delivery of sediment from eroding coasts up-drift. By contrast, on coasts where beaches are underlain by shore platforms, both the Bruun rule and the systems model predicted accelerated recession rates. However, explicit consideration of the interaction between beach and shore platform within the systems model indicates that these coasts have a broader range of responses and lower overall vulnerability to SLR than predicted by the Bruun rule.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号