首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase diagrams of the FeO-MgO-SiO2 system and the structure of the mantle discontinuities
Authors:O L Kuskov  A B Panferov
Institution:1. V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Sciences, 117334, Moscow, USSR
Abstract:Internally consistent thermodynamic computation of equilibria in the FeO-MgO-SiO2 system up to 300 kbar is carried out and phase diagrams and profiles of the elastic properties and density are constructed at the depths of 300–800 km. Comparisons of calculated thermodynamic properties for different petrological models with seismic velocity profiles have been used to constrain the mineralogy of the mantle discontinuities. The 400-km discontinuity may represent the univariant or divariant transition in the olivine component of pyrolite as well as a chemical boundary. For the pyrolite composition at the depth of 650 km there are two different spinel + perovskite + stishovite (640 km) and magnesiowustite + spinel + perovskite (650 km) divariant loops (1–2 km wide) separated by a Invariant zone spinel + perovskite (4–6 km wide). The results indicate that phase changes in pyrolite do not explain the 650-km discontinuity. It is also shown that it is impossible to match the seismic properties observed at the depths of 600–800 km and through the discontinuity with any isochemical petrological model considered in the FMS system. However, increasing the iron content or silica and iron contents across the 650-km discontinuity can produce thermodynamic properties in the lower mantle that are more consistent with those inferred from seismic observations. Constraints on the SiO2 and iron contents in the mantle are inferred from the comparison of thermodynamic and seismological data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号