首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-resolution seafloor mapping using the DSL-120 sonar system: Quantitative assessment of sidescan and phase-bathymetry data from the Lucky Strike segment of the Mid-Atlantic Ridge
Authors:Scheirer  Daniel S  Fornari  Daniel J  Humphris  Susan E  Lerner  Steven
Institution:(1) Department of Geological Sciences, Brown University, Providence, RI 02906, USA;(2) Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;(3) Deep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Abstract:High-resolution, side-looking sonar data collected near the seafloor (sim100 m altitude) provide important structural and topographic information for defining the geological history and current tectonic framework of seafloor terrains. DSL-120 kHz sonar data collected in the rift valley of the Lucky Strike segment of the Mid-Atlantic Ridge near 37° N provide the ability to quantitatively assess the effective resolution limits of both the sidescan imagery and the computed phase-bathymetry of this sonar system. While the theoretical, vertical and horizontal pixel resolutions of the DSL-120 system are <1 m, statistical analysis of DSL-120 sonar data collected from the Lucky Strike segment indicates that the effective spatial resolution of features is 1–2 m for sidescan imagery and 4 m for phase-bathymetry in the seafloor terrain of the Mid-Atlantic Ridge rift valley. Comparison of multibeam bathymetry data collected at the sea-surface with deep-tow DSL-120 bathymetry indicates that depth differences are on the order of the resolution of the multibeam system (10–30 m). Much of this residual can be accounted for by navigational mismatches and the higher resolving ability of the DSL-120 data, which has a bathymetric footprint on the seafloor that is sim20 times smaller than that of hull-mounted multibeam at these seafloor depths (sim2000 m). Comparison of DSL-120 bathymetry with itself on crossing lines indicates that residual depth values are ±20 m, with much of that variation being accounted for by navigational errors. A DSL-120 survey conducted in 1998 on the Juan de Fuca Ridge with better navigation and less complex seafloor terrain had residual depth values half those of the Lucky Strike survey. The quality of the bathymetry data varies as a function of position within the swath, with poorer data directly beneath the tow vehicle and also towards the swath edges.Variations in sidescan amplitude observed across the rift valley and on Lucky Strike Seamount correlate well with changes in seafloor roughness caused by transitions from sedimented seafloor to bare rock outcrops. Distinct changes in sonar backscatter amplitude were also observed between areas covered with hydrothermal pavement that grade into lava flows and the collapsed surface of the lava lake in the summit depression of Lucky Strike Seamount. Small features on the seafloor, including volcanic constructional features (e.g., small cones, haystacks, fissures and collapse features) and hydrothermal vent chimneys or mounds taller than sim2 m and greater than sim9 m2 in surface area, can easily be resolved and mapped using this system. These features at Lucky Strike have been confirmed visually using the submersible Alvin, the remotely operated vehicle Jason, and the towed optical/acoustic mapping system Argo II.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号