首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositionally diverse magmas erupted close together in space and time within a Karoo flood basalt crater complex
Authors:Murray McClintock  Julian S Marsh  James D L White
Institution:(1) Department of Geology, University of Otago, P.O. Box 56, Dunedin, New Zealand;(2) Volcanic Solutions Limited, 29 Luke Street, Dunedin, 9013, New Zealand;(3) Department of Geology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
Abstract:Geochemical data and mapping from a Karoo flood basalt crater complex reveals new information about the ascent and eruption of magma batches during the earliest phases of flood basalt volcanism. Flood basalt eruptions at Sterkspruit, South Africa began with emplacement of thin lava flows before abruptly switching to explosive phreatomagmatic and magmatic activity that formed a nest of craters, spatter and tuff rings and cones that collectively comprise a crater complex >40 km2 filled by 9–18 km3 of volcaniclastic debris. Rising magma flux rates combined with reduced access of magma to external water led to effusion of thick Karoo flood basalts, burying the crater-complex beneath the >1.5 km-thick Lesotho lava pile. Geochemical data is consistent with flood basalt effusion from local dikes, and some lava flows likely shared or re-occupied vent sites active during explosive eruptions at Sterkspruit. Flood basalt magmas involved in Sterkspruit eruptions were chemically heterogenous. This study documents the rapid (perhaps simultaneous) eruption of three chemically distinct basaltic magmas which cannot be simply related to one another from one vent site within the Sterkspruit crater complex. Stratigraphic and map relationships indicate that eruption of the same three magma types took place from closely spaced vents over a short time during formation of the bulk of the crater-complex. Two magma types recognized there have not been recognized in the Karoo province before. The variable composition of flood basalts at Sterkspruit argues that magma batches in flood basalt fields may be small (0.5–1 km3) and not simply related to one another. This implies in turn that heterogeneities in the magma source region may be close to each other in time and space, and that eruptions of chemically distinct magmas may take place over short intervals of space and time without significant hybridisation in flood basalt fields.
Keywords:Karoo  Flood basalt  Magma  Large igneous province  Dike  Lava
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号