首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Late Quaternary glacial history of Khentey Mountains,Central Mongolia
Authors:Purevmaa Khandsuren  Yeong Bae Seong  Jeong Sik Oh  Hyun Hee Rhee  Khadbaatar Sandag  Byung Yong Yu
Abstract:Mongolian glaciers have been the subject of relatively little research, resulting in less geochronological constraint than other parts of Central Asia. The Khentey Mountains (latitude 47–51°N, longitude 105–112°E) are a typical landlocked mountain range exhibiting clear geomorphic evidence of late Quaternary glaciation. Yet, compared to western parts of Mongolia such as the Mongolian Altay, Gobi Altay, Khangay, and Khovsgol, glacial history of the Khentey Mountains is poorly understood. To address this, and permit comparison of the Khentey glacier–climate record with other alpine regions in Mongolia, we performed geomorphological mapping and cosmogenic 10Be surface‐exposure dating in two glaciated regions of the Khentey Mountains: Yestii and Khagiin Khar. Specifically, we measured 10Be in 34 samples collected from five moraine sequences, which, together with morphostratigraphy, correspond to four main glacial stages: (i) The My1 terminal moraine sequence for Yestii (21.0±4.9 ka) and the Mk1 moraine for Khagiin Khar (19.6±2.6 ka), both of which represent the Last Glacial Maximum; (ii) the Lateglacial Mk2 moraine, dated to 16.0±3.5 ka; (iii) the Mk3 moraine, dated to either 17.6±7.0 ka (Lateglacial) or 12.1±1.1 ka (Younger Dryas); and (iv) the currently undated Mk4 moraine (~2200 m a.s.l.), to which we assign a Holocene age. Our results suggest that the timing of maximum glacier extent in Mongolia was regionally variable. In the Khentey Mountains, maximum glaciation occurred during Marine Isotope Stage (MIS) 2, whereas the maximum occurred during MIS 3 in Khangay and Khovsgol and during MIS 4 in the Altay. The MIS 2 glacial maximum in the Khentey Mountains coincided with the global sea level minimum during the Last Glacial Maximum, and was followed by at least three glacial re‐advances during the Lateglacial to possibly the Holocene.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号