首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial and temporal variation of picoplanktic cyanobacteria population in a density stratified estuary,and the introduction of a cellular gradient number
Authors:Alejandro Carrillo  Pablo Huq  Mari C Pérez  José M Redondo
Institution:1. Departamento de Física Aplicada, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Campus Nord-UPC, Mòdul B4-B5, 08034 Barcelona, Spain;2. College of Marine and Earth Studies, University of Delaware, Newark, DE 19716, USA;3. Universidad Politécnica de Valencia, Spain
Abstract:Spatial and temporal variations in the distribution of the marine picoplanktic cyanobacteria population and mixing conditions were found in the Ebro River estuary outflow to the Mediterranean Sea in Spain. Six sampling surveys were undertaken between July 1999 and February 2000 for distances up to 15 km from the river mouth. Measurements were taken of flow velocity, salinity, temperature, depth and picocyanobacteria (PCB) abundances. Gradient Richardson (Rig) and Reynolds (Re) numbers were determined to evaluate hydrodynamics. In summer, large values of Rig arise from the small flow rates, and small values of velocity shear between the surface fresh water layer and the bottom saline layer; conversely, in winter the large flow rates and attendant large velocity shears between the layers give rise to small values of Rig. Flow conditions in the fall are an intermediate case between the summer and winter cases. Vertical abundance distributions were resolved through the river water, interfacial region, and the bottom salt wedge; longitudinal gradients of PCB abundances were also resolved. Seasonal differences in the PCB abundance values were observed. Analysis of cell numbers (C) showed that the variable dC/dS, the dependence of cell number upon salinity gradient (dS) was critical. A non-dimensional number; the cellular gradient number (Cg) is introduced. Cg has useful biological interpretations that can potentially be included in ecological modeling. For example, Cg = 1 pertains to perfect adaptability of the organism to adjust to changing environmental conditions, whereas Cg = 0 describes total mortality. For a system with strong advection there is insufficient time for cells to adapt to the changing environment, and so those cell counts are unchanged. This is the case for the Ebro estuary in winter as advection of salinity (and hence PCB abundance) dominates the other loss processes for large flow rates.
Keywords:phytoplankton  picocyanobacteria  river  estuaries  mixing  stratified flows  salinity gradients
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号