首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony‐iron meteorite
Authors:Alex Ruzicka  Melinda HUTSON
Abstract:Abstract— We analyzed the Steinbach IVA stony‐iron meteorite using scanning electron microscopy (SEM), electron microprobe analysis (EMPA), laser ablation inductively‐coupled‐plasma mass spectroscopy (LA‐ICP‐MS), and modeling techniques. Different and sometimes adjacent low‐Ca pyroxene grains have distinct compositions and evidently crystallized at different stages in a chemically evolving system prior to the solidification of metal and troilite. Early crystallizing pyroxene shows evidence for disequilibrium and formation under conditions of rapid cooling, producing clinobronzite and type 1 pyroxene rich in troilite and other inclusions. Subsequently, type 2 pyroxene crystallized over an extensive fractionation interval. Steinbach probably formed as a cumulate produced by extensive crystal fractionation (?60–70% fractional crystallization) from a high‐temperature (?1450–1490 °C) silicate‐metallic magma. The inferred composition of the precursor magma is best modeled as having formed by ≥30–50% silicate partial melting of a chondritic protolith. If this protolith was similar to an LL chondrite (as implied by O‐isotopic data), then olivine must have separated from the partial melt, and a substantial amount (?53–56%) of FeO must have been reduced in the silicate magma. A model of simultaneous endogenic heating and collisional disruption appears best able to explain the data for Steinbach and other IVA meteorites. Impact disruption occurred while the parent body was substantially molten, causing liquids to separate from solids and oxygen‐bearing gas to vent to space, leading to a molten metal‐rich body that was smaller than the original parent body and that solidified from the outside in. This model can simultaneously explain the characteristics of both stony‐iron and iron IVA meteorites, including the apparent correlation between metal composition and metallographic cooling rate observed for metal.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号