首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transient scattering of elastic waves by dipping layers of arbitrary shape. Part 2: Plane strain model
Authors:Hossein Eshraghi  Marijan Dravinski
Abstract:Scattering of elastic waves by dipping layers of arbitrary shape embedded within an elastic half-space is investigated for a plane strain model by using a boundary method. Unknown scattered waves are expressed in the frequency domain in terms of wave functions which satisfy the equations of motion and appropriate radiation conditions at infinity. The steady state displacement field is evaluated throughout the elastic medium for different incident waves so that the continuity conditions along the interfaces between the layers and the traction-free conditions along the surface of the half-space are satisfied in the least-squares sense. Transient response is constructed from the steady state one through the Fourier synthesis. The results presented show that scattering of waves by dipping layers may cause locally very large amplification of surface ground motion. This amplification depends upon the type and frequency of the incident wave, impedance contrast between the layers, component of displacement which is being observed, location of the observation station and the geometry of the subsurface irregularity. These results are in agreement with recent experimental observations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号