首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of barotropic shear on baroclinic instability Part II: The initial value problem
Authors:Buwen Dong  IN James
Institution:Department of Meteorology, University of Reading, Reading RG6 2AU, UK
Abstract:The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号