首页 | 本学科首页   官方微博 | 高级检索  
     检索      

结合激光雷达和探空资料研究青藏高原地区混合层高度特征
引用本文:王存贵,初奕琦,檀望舒,贺千山,李成才.结合激光雷达和探空资料研究青藏高原地区混合层高度特征[J].大气科学,2018,42(5):1133-1145.
作者姓名:王存贵  初奕琦  檀望舒  贺千山  李成才
作者单位:1.北京大学物理学院大气与海洋科学系, 北京 100871
基金项目:中国科学院战略性先导科技专项XDA05040000,国家高技术研究发展计划(863计划)项目SQ2010AA1221583001,国家公益性行业(气象)科研专项GYHY201406001、GYHY201106023,国家自然科学基金项目41175020、41375008、91637101
摘    要:利用那曲地区的微脉冲激光雷达探测资料,采用梯度法获取了那曲地区白天混合层高度随时间的演变信息及混合层特征参数,结果表明混合层在上午发展缓慢,中午以后发展迅速,14:00(北京时)前后达到稳定;强烈的对流热泡活动导致混合层高度起伏较大,参数化反演得到的卷夹层厚度达到0.4~0.5 km,卷夹比在0.2左右。利用探空资料结合日最大位温资料,采用气块法得到了高原地区7个站点的每日最大混合层高度数据集。通过对由激光雷达和探空资料得到的最大混合层高度结果进行对比,发现二者有很好的一致性(相关系数0.85,均值偏差0.11 km,均方根误差0.30 km,并通过0.05显著性水平的t检验)。最大混合层高度在7个站点均有明显的逐日变化特征。从年均值看,最大混合层高度与海拔高度之间没有明显相关关系。从季节均值看,格尔木与都兰站表现出明显的春高冬低的分布特征,而其它五个站点则表现为春高夏低,表明高原地区的盆地地形和山地地形对混合层高度有显著而不同的影响。通过定义热力稳定度和确定特征气压层高度,利用热力稳定度与最大混合层高度之间良好的线性关系,获取了一种简便地获取最大混合层高度的统计方法。

关 键 词:青藏高原    混合层高度    微脉冲激光雷达(MPL)    探空资料
收稿时间:2017/8/26 0:00:00

Characteristics of Atmospheric Mixing Layer Height over the Tibetan Plateau with Lidar and Radiosonde Data
WANG Cungui,CHU Yiqi,TAN Wangshu,HE Qianshan and LI Chengcai.Characteristics of Atmospheric Mixing Layer Height over the Tibetan Plateau with Lidar and Radiosonde Data[J].Chinese Journal of Atmospheric Sciences,2018,42(5):1133-1145.
Authors:WANG Cungui  CHU Yiqi  TAN Wangshu  HE Qianshan and LI Chengcai
Institution:1.Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 1008712.Shanghai Meteorological Service, Shanghai 201100
Abstract:The time series of mixing layer height and other characteristic variables in Naqu area are retrieved from Micro-Pulse Lidar (MPL, the same below) data by using the gradient method. Results show that the development of the mixing layer is slow in the morning and rapid in the afternoon, reaching a stable status at around 1400 BT (Beijing time). The fluctuation of the mixing layer height in the afternoon indicates that there exist frequent and strong convective activities over the Tibetan Plateau. An estimation of 400-500 m for the entrainment ozone depth and about 0.2 for the entrainment rate can be obtained by a parameterization method. Based on radiosonde data collected at 0800 BT and the daily highest surface potential temperature, the maximum mixing height (MMH) at 7 stations in the Tibetan Plateau can be obtained using the parcel method. The MMHs from MPL data and from radiosonde data show a good agreement with each other with the correlation coefficient of 0.85, mean bias of 0.11 km, root-mean-square error of 0.30 km, and the correlation passes the t test at the significance level of 0.05. The MMHs at the 7 stations all show an obvious daily variation. The annual mean of MMH indicates that there is no significant correlation between the MMH and the site altitude. The MMHs at Golmud and Dulan stations show different seasonal characteristics from those at other 5 stations. The former reaches their peaks in spring and monotonically decrease to low values in winter, while the latter reach their highest values in spring and the lowest values occur in summer. The above results show that terrain features of basin and mountain in the Tibetan Plateau have significant but different effects on the mixing layer height. With the definitions of thermal stability and characteristic pressure level, a statistical approach that can be used to easily obtain MMH is proposed based on the good linear relationship between thermal stability and MMH.
Keywords:Tibetan Plateau  Mixing layer height  Micro-Pulse Lidar (MPL)  Radiaosonde
本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号