首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contribution of early impact events to metal‐silicate separation,thermal annealing,and volatile redistribution: Evidence in the Pułtusk H chondrite
Authors:Agata M Krzesińska
Institution:1. Department of Earth Sciences, Natural History Museum, London, UK;2. Institute of Geological Sciences, Polish Academy of Sciences, Wroc?aw, Poland
Abstract:Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号