首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical conduction and polarization of calcite single crystals
Authors:Norio Wada  Naohiro Horiuchi  Wei Wang  Tetsuo Hiyama  Miho Nakamura  Akiko Nagai  Kimihiro Yamashita
Institution:1. Department of Inorganic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 1010062, Japan
Abstract:The electrical conductivity and polarization properties of calcite single crystals with three orientations, namely, a (00.1) plane perpendicular to the crystallographic c axis (10.0) plane parallel to the crystallographic c axis, and a (10.4) cleavage plane, were studied by both complex impedance and thermally stimulated depolarization current (TSDC) measurements. Conductivities for (00.1)-, (10.0)-, and (10.4)-oriented single calcite crystals at 400–600?°C were 1.16?×?10?7?–?1.05?×?10?5, 7.40?×?10?8?–?4.27?×?10?6, and 4.27?×?10?7?–?2.86?×?10?5 Ω?1 m?1, respectively, and the activation energies for conduction were 112, 103, and 101?kJ?mol?1, respectively. The TSDC spectra verified the electrical polarizability of calcite crystals. The activation energy for depolarization, estimated from TSDC spectra, of the (00.1)-, (10.0)-, and (10.4)-oriented calcite substrates were 112, 119, and 114?kJ?mol?1, respectively. Considering the correlation between the processes of conduction and electric polarization, we proposed the mechanisms of conduction and polarization in calcite on the assumption of oxide ion transport.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号