首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterisation of domestic and industrial sewage in Southern California coastal sediments using nitrogen,carbon, sulphur and uranium tracers
Authors:RE Sweeney  EK Kalil  IR Kaplan
Institution:1. Institute of Geophysics and Planetary Physics. University of California, Los Angeles, California 90024, USA;7. Department of Earth and Space Sciences. University of California, Los Angeles, California 90024, USA
Abstract:A degradation-mixing model has been developed to aid in the interpretation of geochemical processes occurring in sewage-contaminated marine sediment near San Pedro, California. The nitrogen isotope ratio (1514N) is shown to be an effective tracer of sewage discharge-on the San Pedro Shelf. Isotopic fractionation of 15N14N during release of amino compounds or ammonia (as a consequence of bacterial degradation of organic detritus) appears to be negligible. The nitrogen isotope ratio, therefore, may be considered a conservative component for tracing the source of organic matter deposited in marine sediment.Uranium enrichment from seawater is shown not to occur in the highly reducing sewage-contaminated sediments. The content of uranium in the effluent particulates (18 ppm) is large compared with the content in the uncontaminated sediment (3 to 5 ppm). This allows the content of uranium to also be used as a tool for tracing the deposition of sewage particles in marine sediment. Uranium and nitrogen are shown to be incorporated in the organic fraction of sewage effluent and are released during bacterial degradation of the organic matter. Cadmium and sulphur are shown not to be mobilised during sewage deposition and degradation. The stable isotope ratio of sulphur (34S32S) is used to demonstrate that sulphur enrichment occurs in the sediment by in situ reduction of seawater sulphate. The data summarised by Morel et al. (1975) are presented and discussed in accordance with the above model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号