首页 | 本学科首页   官方微博 | 高级检索  
     检索      


50-year record and solid state speciation of mercury in natural and contaminated reservoir sediment
Authors:Sabine Castelle  Jörg SchäferGérard Blanc  Stéphane AudryHenri Etcheber  Jean-Pierre Lissalde
Institution:Traceurs Géochimiques et Minéralogiques (TGM), UMR CNRS 5805 EPOC, Université Bordeaux I, Av. d. Facultés, F.33405 Talence Cedex, France
Abstract:Contaminated fluvial sediments represent both temporary sinks for river-borne pollutants and potential sources in case of natural and/or anthropogenic resuspension. Reservoir lakes play a very important role in sediment dynamics of watersheds and may offer great opportunities to study historical records of river-borne particles and associated elements transported in the past. The fate and potential environmental impact of Hg depends on its abundance, its carrier phases and its chemical speciation. Historical Hg records and solid state Hg speciation were compared in sediments from two contrasting reservoirs of the Lot River (France) upstream and downstream from a major polymetallic pollution (e.g. Cd, Zn) source. Natural (geochemical background) and anthropogenic Hg concentrations and their relationships with predominant carrier phases were determined. The results reveal important historical Hg contamination (up to 35 mg kg−1) of the downstream sediment, reflecting the historical evolution of industrial activity at the point source, i.e. former coal mining, Zn ore treatment and post-industrial remediation work. Single chemical extractions (ascorbate, H2O2, KOH) suggest that at both sites most (∼75%) of the Hg is bound to organic and/or reactive sulphide phases. Organo-chelated (KOH-extracted) Hg, representing an important fraction in the uncontaminated sediment, shows similar concentrations (∼0.02 mg kg−1) at both sites and may be mainly attributed to natural inputs and/or processes. Although, total Hg concentrations in recent surface sediments at both sites are still very different, similar mono-methylmercury concentrations (up to 4 μg kg−1) and vertical distributions were observed, suggesting comparable methylation-demethylation processes. High mono-methylmercury concentrations (4–15 μg kg−1) in 10–40 a-old, sulphide-rich, contaminated sediment suggest long-term persistence of mono-methylmercury. Beyond historical records of total concentrations, the studied reservoir sediments provided new insights in solid state speciation and carrier phases of natural and anthropogenic Hg. In case of sediment resuspension, the major part of the Hg historically stored in the Lot River sediments will be accessible to biogeochemical recycling in the downstream fluvial-estuarine environment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号