首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace and minor elements in sphalerite: A LA-ICPMS study
Authors:Nigel J Cook  Cristiana L Ciobanu  Allan Pring  William Skinner  Leonid Danyushevsky  Frank Melcher
Institution:a Natural History Museum, University of Oslo, Boks 1172 Blindern, N-0318 Oslo, Norway
b South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
c Department of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia
d Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, SA, Australia
e Department of Earth Sciences, University of Toyama, Japan
f CODES, University of Tasmania, Hobart, Tasmania, Australia
g Department of Geosciences, North Dakota State University, Fargo, ND 58105, USA
h Federal Institute for Geosciences and Natural Resources (BGR), D-30655 Hannover, Germany
Abstract:Sphalerite is an important host mineral for a wide range of minor and trace elements. We have used laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) techniques to investigate the distribution of Ag, As, Bi, Cd, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sb, Se, Sn and Tl in samples from 26 ore deposits, including specimens with wt.% levels of Mn, Cd, In, Sn and Hg. This technique provides accurate trace element data, confirming that Cd, Co, Ga, Ge, In, Mn, Sn, As and Tl are present in solid solution. The concentrations of most elements vary over several orders of magnitude between deposits and in some cases between single samples from a given deposit. Sphalerite is characterized by a specific range of Cd (typically 0.2-1.0 wt.%) in each deposit. Higher Cd concentrations are rare; spot analyses on samples from skarn at Baisoara (Romania) show up to 13.2 wt.% (Cd2+ ↔ Zn2+ substitution). The LA-ICPMS technique also allows for identification of other elements, notably Pb, Sb and Bi, mostly as micro-inclusions of minerals carrying those elements, and not as solid solution. Silver may occur both as solid solution and as micro-inclusions. Sphalerite can also incorporate minor amounts of As and Se, and possibly Au (e.g., Magura epithermal Au, Romania). Manganese enrichment (up to ∼4 wt.%) does not appear to enhance incorporation of other elements. Sphalerite from Toyoha (Japan) features superimposed zoning. Indium-sphalerite (up to 6.7 wt.% In) coexists with Sn-sphalerite (up to 2.3 wt.%). Indium concentration correlates with Cu, corroborating coupled (Cu+In3+) ↔ 2Zn2+ substitution. Tin, however, correlates with Ag, suggesting (2Ag+Sn4+) ↔ 3Zn2+ coupled substitution. Germanium-bearing sphalerite from Tres Marias (Mexico) contains several hundred ppm Ge, correlating with Fe. We see no evidence of coupled substitution for incorporation of Ge. Accordingly, we postulate that Ge may be present as Ge2+ rather than Ge4+. Trace element concentrations in different deposit types vary because fractionation of a given element into sphalerite is influenced by crystallization temperature, metal source and the amount of sphalerite in the ore. Epithermal and some skarn deposits have higher concentrations of most elements in solid solution. The presence of discrete minerals containing In, Ga, Ge, etc. also contribute to the observed variance in measured concentrations within sphalerite.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号