首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen-isotopic variability in lipids from Santa Barbara Basin sediments
Authors:Chao Li  Alex L Sessions  Franklin S Kinnaman
Institution:a Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
b Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USA
Abstract:We conducted an extensive survey of hydrogen-isotopic compositions (D/H ratios) of diverse sedimentary lipids from the Santa Barbara Basin (SBB), offshore southern California. The main goal of this survey was to assess the diversity of D/H ratios in lipids from marine sediments, in order to provide a more detailed understanding of relevant biological and geochemical factors impacting lipid isotopic variability. A total of 1182 individual δD values are reported from two stations in SBB, one located in the suboxic basin depocenter and the other on the fully oxic flank of the basin. Sediments collected from the basin depocenter span a depth of ∼2.5 m and reach the methanogenic zone. Lipids that were analyzed include n-alkanes, n-alkanols and alkenols, short- and long-chain fatty acids, linear isoprenoids, steroids, and hopanoids, and exhibit several systematic patterns. First, there are no significant differences in δD values between the two sampling locations, nor with increasing depth for most lipids, indicating that degradation does not influence sedimentary lipid δD values. Second, relatively large differences in δD values among differing molecular structures are observed in all samples. n-Alkyl lipids of probable marine origin have typical δD values between −150 and −200‰, those from terrestrial leaf waxes and aquatic plants range from −80 to −170‰, while petroleum n-alkanes are typically −90 to −150‰. Third, lipids inferred to derive from bacteria (branched fatty acids and hopanols) living at the sediment surface or in the water column tend to be D-enriched relative to similar algal products by 30‰ or more. At the same time, several other lipids have δD values that decrease strongly with depth, presumably as a result of in situ production by anaerobic bacteria. This dichotomy in isotopic compositions of bacterial lipids is inconsistent with a nearly constant D/H fractionation during lipid biosynthesis, and likely reflects significant variations associated with metabolism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号