首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Voids in the SDSS galaxy survey
Authors:A V Tikhonov
Institution:(1) St. Petersburg State University, Universitetskii pr. 28, St. Petersburg, 198504, Russia
Abstract:Using the method of searching for arbitrary shaped voids in the distribution of volume-limited samples of galaxies from the DR5 SDSS survey, we have identified voids and investigated their characteristics and the change in these characteristics with decreasing M lim (from ?19.7 to ?21.2, H 0 = 100 km s?1 Mpc?1)—the upper limit on the absolute magnitude of the galaxies involved in the construction of voids. The total volume of the 50 largest voids increases with decreasing M lim with a break near M* = ?20.44—the characteristic value of the luminosity function for SDSS galaxies. The mean overdensity in voids increases with decreasing M lim also with a weak break near M*. The exponent of the dependence of the volume of a void on its rank increases significantly with decreasing M lim starting from M lim ~ ?20.4 in the characteristic range of volumes, which reflects the tendency for greater clustering of brighter galaxies. The averaged profile of the galaxy overdensity in voids has a similar pattern almost at all M lim. The galaxies mostly tend to gravitate toward the void boundaries and to avoid the central void regions; the overdensity profile is flat in the intermediate range of distances from the void boundaries. The axial ratios of the ellipsoids equivalent to the voids are, on average, retained with changing M lim and correspond to elongated and nonoblate void shapes, but some of the voids can change their shape significantly. The directions of the greatest void elongations change chaotically and are distributed randomly at a given M lim. The void centers show correlations reflecting the correlations of the galaxy distribution on scales (35–70)h ?1 Mpc. The galaxy distribution in the identified voids is nonrandom—groups and filaments can be identified. We have compared the properties of the galaxies in voids (in our case, the voids are determined by the galaxies with absolute magnitudes M abs < M lim = ?20.44, except for the isolated galaxies) and galaxies in structures identified using the minimum spanning tree. A bimodal color distribution of the galaxies in voids has been obtained. A noticeable difference is observed in the mean color indices and star formation rates per unit stellar mass of the galaxies in dense regions (structures)—as expected, the galaxies in voids are, on average, bluer and have higher log (SFR/M star). These tendencies become stronger toward the central void regions.
Keywords:galaxies  voids  large-scale structure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号