首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magmatic evolution of Late Cenozoic volcanic rocks of the Lau Ridge,Fiji
Authors:J W Cole  I J Graham  I L Gibson
Institution:(1) Department of Geology, University of Canterbury, Private Bag, Christchurch, New Zealand;(2) DSIR, Institute of Nuclear Sciences, PO Box 31-312, Lower Hutt, New Zealand;(3) Department of Earth Sciences, University of Waterloo, NZL3G1 Waterloo, Ontario, Canada
Abstract:Three main groups of lavas are exposed on islands of the Lau Ridge: the Lau Volcanic Group (LVG), 14.0–5.4 Ma, are predominantly andesite; Korobasaga Volcanic Group (KVG), 4.4–2.4 Ma, are predominantly basalt and Mago Volcanic Group (MVG), 2.0–0.3 Ma, are basalt-hawaiite. LVG and KVG lavas are mostly medium-K tholeiitic rocks with high LILE/HFSE ratios characteristic of islands ares, while MVG lavas are ne-normative alkalic rocks with high LILE and HFSE, characteristic of ocean island basalts. LVG lavas have high ?Nd (+8.0–+8.4) and low 87Sr/86Sr (0.70273–0.70349) similar to N-MORB, whereas KVG lavas have slightly more radiogenic values (?Nd=+7.5?+8.4; 87Sr/86Sr=0.70323-0.70397). MVG lavas form an isotopically distinct group having lower ?Nd (+4.6–+4.9) and (87Sr/86Sr ranging from 0.70347–0.70375). LVG lavas were erupted in a primary oceanic island arc (Vitiaz arc) during the Miocene. Basaltic lavas were derived by approximately 19% partial melting of mantle wedge peridotite with only minor subduction component. Andesites and dacites were produced by low-pressure plagioclase-pyroxene-titanomagnetite dominated crystal fractionation. KVG lavas were erupted during the period immediately prior to or during the initial stages of rifting in the Lau Basin, and, like LVG lavas, show significant chemical differences at the northern and southern ends of the Lau Ridge. Lavas at the northern end (type (ii)) appear to be derived from a more depleted source than LVG but with a greater amount of subduction component. Those at the southern end (type (i)) probably came from a slightly more enriched source with less subduction component. MVG basalts and hawaiites were derived from an enriched mantle with little or no subduction input. The hawaiites (type (i)) could not have been derived from the basalts (type (ii)), and the two magma types must have come from different sources, indicating mantle heterogeneity. The lack of subduction influence indicates the MVG lavas are tectonically unrelated to the present-day Tonga arc, and the lack of depletion indicators suggests they have tapped a different (new?) part of the mantle wedge. This may reflect introduction of sub-Pacific mantle through the present Tonga-Lau subduction system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号