首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simplified non-linear seismic displacement demand prediction for low period structures
Authors:Clotaire Michel  Pierino Lestuzzi  Corinne Lacave
Institution:1. Applied Computing and Mechanics Laboratory (IMAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2. Swiss Seismological Service (SED), Swiss Federal Institute of Technology of Zurich (ETHZ), Sonneggstrasse 5, 8092?, Zurich, Switzerland
3. Résonance Ingénieurs-Conseils, Carouge, Switzerland
Abstract:The prediction of non-linear seismic demand using linear elastic behavior for the determination of peak non-linear response is widely used for seismic design as well as for vulnerability assessment. Existing methods use either linear response based on initial period and damping ratio, eventually corrected with factors, or linear response based on increased equivalent period and damping ratio. Improvements to the original EC8 procedure for displacement demand prediction are proposed in this study. Both propositions may be graphically approximated, which is a significant advantage for practical application. A comparison with several other methods (equal displacement rule, EC8 procedure, secant stiffness and empirical equivalent period methods) is performed. The study is based on non-linear SDOF systems subjected to recorded earthquakes, modified to match design response spectra of different ground types, and focuses on the low frequency range that is of interest for most European buildings. All results are represented in the spectral displacement/fundamental period plane that highlights the predominant effect of the fundamental period on the displacement demand. This study shows that linearized methods perform well at low strength reduction factors but may strongly underestimate the displacement demand at strength reduction factors greater than 2. This underestimation is an important issue, especially for assessment of existing buildings, which are often related with low lateral strength. In such cases, the corresponding strength reduction factors are therefore much larger than 2. The new proposals significantly improve the reliability of displacement demand prediction for values of strength reduction factors greater than 2 compared to the original EC8 procedure. As a consequence, for the seismic assessment of existing structures, such as unreinforced masonry low-rise buildings, the current procedure of EC8 should be modified in order to provide accurate predictions of the displacement demand in the domain of the response spectrum plateau.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号