首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling sensible and latent heat fluxes over sea during unstable,very close to neutral conditions
Authors:Anna Rutgersson  Björn Carlsson  Ann-Sofi Smedman
Institution:(1) Department of Earth Sciences, Meteorology, Uppsala University, Uppsala, Sweden
Abstract:During slightly unstable but still very close to neutral conditions new results from two previous investigations have shown a significant increase of sensible and latent heat fluxes over the sea. The vertical heat transport during these conditions is dominated by detached eddies originating at the top of the boundary layer, bringing relatively cold and dry air to the surface. This effect can be described in numerical models by either enhanced heat transfer coefficients for sensible and latent heat (Stanton and Dalton numbers respectively) or with an additional roughness length, added to the original roughness lengths for heat and humidity. Such new expressions are developed using turbulence measurements from the Baltic Sea valid for wind speeds up to 14 m s−1. The effect of including the increased heat fluxes is investigated using two different numerical models: a regional three-dimensional climate model covering northern Europe, and a process-oriented ocean model for the Baltic Sea. During periods of several days, the latent heat flux can be increased by as much as 100 W m−2. The increase in sensible heat flux is significantly smaller since the process is only of importance in the very near-neutral regime where the sensible heat flux is very small. The long-term average effect over the Baltic Sea is of the order of several W m−2.
Keywords:Air–  sea exchange  Heat fluxes  Near-neutral stratification  UVCN regime
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号